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We investigate a dephasing mechanism in a quantum dot capacitively coupled to a quantum point contact.
We use a model which was proposed to explain the 0.7 structure in point contacts, based on the presence of a
quasibound state in a point contact. The dephasing rate is examined in terms of charge fluctuations of electrons
in the bound state. We address a recent experiment by Avinun-Kalish et al. �Phys. Rev. Lett. 92, 156801
�2004��, where a double-peak structure appears in the suppressed conductance through the quantum dot. We
show that the two conducting channels induced by the bound state are responsible for the peak structure.
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Coherent transmission of electrons through a quantum dot
�QD� has been investigated using an Aharonov-Bohm �AB�
interferometer to understand phase coherent transport
transport.1,2 For this purpose, controlled dephasing experi-
ments are essential. In Refs. 3 and 4, experiments were per-
formed using mesoscopic structures with QDs. Reference 3
measured the suppression of coherent transmission through a
QD embedded in an AB ring. A quantum point contact
�QPC� is capacitively coupled to a QD in the Coulomb
blockade regime. Adding an electron to the QD changes the
transmission probability T through the QPC by �T. When
the source-drain voltage VQPC through the QPC is finite,
there are the current fluctuations—i.e., the shot noise. The
QPC then induces dephasing in the QD. The visibility of the
AB interference pattern is 1−�,3,5–7 with the suppression
strength �=� /�, where � is the level width of the QD and �
is the dephasing rate:

� =
eVQPC

8�

��T�2

T�1 − T�
. �1�

Recently a controlled dephasing experiment was investi-
gated for the QD in the Kondo regime.8 Preceding this ex-
periment, Silva and Levit addressed the problem using the
slave-boson mean-field theory.9 The conductance G of the
QD is suppressed by �G=−G�VQPC=0�� with

� =
�

TK
, �2�

where TK is the Kondo temperature. Later, Kang10 using the
1 /N expansion calculated that

� =
�2

�2 + TK
2 . �3�

The experiment demonstrated several interesting features.
One of them is the magnitude of �. It is about 30 times larger
than Eq. �2�. Kang10 showed that the dephasing rate can be
large when the QPC is geometrically asymmetric. Another
intriguing result is that � shows a double-peak structure as a
function of T. This result has not yet been addressed, and it is
natural to associate the problem with another intriguing fea-
ture of the QPC: the 0.7 structure.11,12

In many experiments, the conductance GQPC through the
QPC shows an additional plateau near GQPC=0.7�2e2 /h at

zero magnetic field.11–16 Further experiments have been
performed17–21 to understand the features that cannot be ex-
plained by the conventional point contact model. In parallel,
many theoretical studies have been made using different
models, including an antiferromagnetic Wigner crystal,22

spin split models,23–29 and numerical calculations using the
density functional theory.23,30–33 References 31–33 demon-
strated the formation of a quasibound state in the QPC,
which is responsible for localized spins near the QPC.
Grounded in this finding, a generalized Kondo model has
been invoked to describe transport properties through the
QPC.34 The bound state and the Coulomb interaction in the
QPC cause an additional plateau of G, which exhibits the
Kondo effect. Kondo physics has been observed at low tem-
perature and voltage bias.15 In addition, recent
experiments35,36 measured the shot noise through the QPC as
a function of magnetic field. The results indicate two con-
ducting channels with different transmission amplitudes.
Reference 37 showed that the model34 is consistent with the
experimental results in Refs. 35 and 36.

In this paper, we investigate a dephasing mechanism in a
QD using the generalized Kondo model34 in a QPC. The
dephasing rate is examined in terms of charge fluctuations of
the quasibound state in a QPC. The presence of the state in
the QPC accounts for a dephasing mechanism which is quali-
tatively different from the mechanism without the bound
state. The two conducting channels due to the bound state are
responsible for a double-peak structure of the dephasing rate,
which is observed in Ref. 8.

We consider a QD-QPC hybrid system as depicted in Fig.
1�a�. The model Hamiltonian of the system consists of three
parts HQPC, HQD, and HQPC-QD as shown below.

The model Hamiltonian of the QPC proposed in Ref. 34 is
the generalized Kondo model: HQPC=Hlead+Hsd with

Hlead = �
k	�L,R


k	c̄k	ck	, �4�

Hsd = �
k,k�	�L,R

�Jkk�
�1� − Jkk

�2��c̄k	ck�	

+ 2 �
k,k�		��L,R

�Jkk�
�1� + Jkk�

�2� �c̄k		� 		�ck�	� · S� , �5�

where
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Jkk�
�i� =

�− 1��i+1�

4
� Vk

�i�Vk�
�i�


k − E�i� +
Vk

�i�Vk�
�i�


k� − E�i�� �6�

and c̄k	 creates an electron with momentum k and spin 	 in
lead L and R; E�1�=E0 and E�2�=E0+U with the energy level

of local spin state E0 and the Coulomb energy U. S� is the
local spin due to the localized state. We assume J

kk�
�i� =J�i�.

The exponential increase of the couplings is modeled by a
Fermi function fFD�x�=1 / �1+exp�x��, leading to the Fermi

energy EF dependence of J�i�: J�i�=
�−1��i+1��V�i��2

EF−E�i� fFD�−EF /��,
where � is a constant that characterizes the gate voltage
range between the conductance plateaus in the QPC.

The Hamiltonian of the QD is the conventional

Anderson model: HQD=�
�=L,R
k,	, �k f̄k	�fk	�+�	
0d̄	d	

+Udn↑n↓+VT�
�=L,R
k,	, � f̄ k	�d	+H.c.�, where d̄	 creates an elec-

tron in the QD with spin 	, while f̄ k	� creates an electron
with momentum k and spin 	 in the lead � attached to the

QD with the tunneling matrix element VT; n	= d̄	d	, and 
0
and Ud are the energy level and the Coulomb energy in the
QD, respectively.

The third part of the Hamiltonian, HQPC-QD, describes the
interaction between the QPC and the QD. Localized elec-
trons in the QPC interact with the electrons in the QD:

HQPC-QD = WnQPC�
	

n	, �7�

where nQPC is the number of localized electrons in the QPC
and W is the coupling constant. The energy level in the QD is
shifted by HQPC-QD: 
0→
0+WnQPC.

The conductance through the QPC was calculated using
second-order perturbation theory:34,38 GQPC=2e2T /h with

T = 4�2
2��J�1� − J�2��2 + 3�J�1� + J�2r��2� �8�

and the density of states, 
, in the leads. We have introduced
a renormalized coupling constant J�2r�=1 / �4
 ln�T /TK�� with
the Kondo temperature TK=U exp�−1 / �4
J�2���, which char-

acterizes the Kondo effect in the QPC.34 The right-hand side
of Eq. �8� consists of three terms proportional to �J�1��2,
�J�2/2r��2, and J�1�J�2/2r�. This combination of the terms indi-
cates an AB interferometer picture with the J�1� and J�2� chan-
nels in the QPC as depicted in Fig. 1�b�. Note that the ap-
pearance of the J�1�J�2� term is not peculiar to the Kondo
model �5�. When multichannels involve electron transport,
interference between them occurs.

The electron transport through the QPC induces fluctua-
tions of nQPC since Eq. �5� is an effective Hamiltonian in the
presence of a localized electron and cotunneling processes
via charge excitation states described by J�i� in Eq. �6�. If no
current flows through the QPC, nQPC=1. When electrons
pass through the J�1� channel, virtual excitations from
nQPC=1 to nQPC=0 are involved, while when electrons pass
through the J�2� channel, excitations to nQPC=2 are involved.
These situations are depicted in Fig. 1�c� with nQPC−1. This
change in nQPC shifts 
0 in the QD. In this way, the transmis-
sion of electrons through the QPC is monitored by electrons
in the QD. The current fluctuations �shot noise� through the
QPC lead to fluctuations in nQPC and eventually in 
0. It has
been shown that the fluctuations of 
0 due to the external
environment lead to dephasing in the QD, where the time
evolution of d	 shows a exponential decay due to the
fluctuations.6

Transport through the “AB ring” in the QPC is monitored
by the QD through these charge fluctuations. The terms pro-
portional to �J�1��2 and �J�2/2r��2 give the transmission prob-
ability of the excited states with nQPC−1= �1, respectively.
The J�1�J�2/2r� term, on the other hand, describes the overlap
between the transmission coefficients of the excited states
with nQPC−1= �1. The QD cannot monitor this overlap ef-
fectively compared to the �J�1��2 and �J�2/2r��2 terms. This is
because the QD can detect nQPC−1 through the Coulomb
interaction �7�, and accordingly the fluctuations of 
0 in the
QD for this term are much smaller than the other terms.
Thereby the current fluctuations of the �J�1��2 and �J�2/2r��2

terms contribute to the dephasing in the QD while those of
the J�1�J�2/2r� term can be negligible.

The dephasing rate � is then the sum of the dephasing
rates of the two independent channels: �J�1��2 and �J�2/2r��2

terms. In each channel, we use the result of the previous
theories3,5–7 for a single-channel QPC model. The measured
�T characterizes the interaction between the QPC and QD.
The total dephasing rate � is, instead of Eq. �1�,

� =
eVQPC

8�
��0�T1� + �0�T2�� , �9�

with �0�T�= ��T�T��2 /T�1−T�, where Ti is the transmission
probability through the channel J�i�:

T1/2 = 4�2
2��J�1/2��2 + 3�J�1/2r��2� . �10�

The common factor of �T�T� appears for both transmission
channels. This is because �T is measured by adding an elec-
tron to the QD, and this affects both channels equally.

We calculate � in Eq. �9� as a function of T in Eq. �8�. We
use a perturbative approach with

J(1), E0

J(2), E0+U

Lead L Lead R

QD

QPC

(b)(a)

nQPC - 1=
0 +1 0

0 -1 0

J(2)

J(1)

(c)

FIG. 1. �a� Schematic view of a QD coupled to a QPC. �b� The
two-channel model of the QPC. It consists of two conducting chan-
nels due to Kondo coupling constants J�i��i=1,2�, which work as an
Aharonov-Bohm interferometer in the QPC. �c� The charge fluctua-
tions due to the transmission through the J�1� and J�2� channels. The
numbers indicate nQPC−1.
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T̄ =
T

1 + T
�11�

and

T̄i =
Ti

1 + Ti
�12�

in place of T and Ti. This corresponds to taking into account
the perturbative corrections to Hlead by Hsd. The current
though the QPC is calculated in the following way. We
expand the Keldysh action Tc exp�−iSsd�, where Ssd is the
action of the Kondo interaction �5� and the time order is
taken along the Keldysh contour. We expand the action
up to the second order in J�i� and reduce it to the bilinear
form with respect to conduction electron fields using
Wick’s theorem.39 Then we have a noninteracting model

without Hsd and with the renormalized action S̃0 for the
kinetic term of conduction electrons. Then the current

through the QPC is calculated with S̃0 and the current
operator I= ie /���k�L,k��R,	�J�1�−J�2��c̄k	ck�	+2�

k�	��R
k,	�L, �J�1�

+J�2��c̄k		� 		�ck�	� ·S��+H.c. The transmission probability is
then given by Eq. �11�. If the renormalization of S0 is disre-

garded, where S̃0=S0 with the action S0 for Eq. �4�, the trans-
mission probability is given by Eq. �8�. The origin of T in the
denominator of Eq. �11� is the Kondo scattering in each lead,
while T in the numerator is the scattering between two leads.
Since the Kondo coupling constants are equal for both scat-
ting processes, the same factor of T appears. In a similar
way, the transmission probability Ti through the channel J�i�

acquires the denominator 1+Ti.
We need to find the T dependence of �0 from the experi-

mental data. In Fig. 2�a�, symbols indicate the two sets of the
experimental data in Ref. 8. To fit these data, we use
�0�T�=0.9�T /0.2�10−5 when T�0.2 and �0�T�
=0.9 exp�1− �T /0.2�0.7��10−5 when T�0.2. The plot is
shown by the solid line in Fig. 2�a�. This choice of �0 reflects
the fact that �T is a highly asymmetric function with respect
to T. The maximum of �T is located at T=0.2. Other choices
of �0 will give qualitatively similar results.

In the experiments, the differential conductance through
the QPC exhibited a zero-bias anomaly �ZBA� while no clear
sign of the 0.7 structure was observed. In Ref. 15, a ZBA
was observed, which confirms that it originates from the
Kondo effect. The absence of a clear 0.7 structure does not
contradict the Kondo effect but rather it indicates that the
effect is strong.40 In Fig. 2�b�, GQPC is plotted as a function
of the Fermi energy EF of conduction electrons with

�V�1��2 / 	E0	=0.25, 
�V�2��2 / 	E0	=0.025, and U / 	E0 	 =1.5.
The parameters are chosen so that the QPC does not show a
clear 0.7 structure in GQPC.

In Fig. 2�c�, � / �eVQPC /8��=�0�T1�+�0�T2� is plotted as a
function of T by the thick solid line, while for comparison
�0�T� for the conventional single-channel QPC model is
shown by the thin solid line. A double-peak structure of �
appears as in the experiment, in contrast to a single-peak

structure. The peak positions are located at T
0.25 and
T
0.7. According to Ref. 10, �G is given by Eq. �3�. It is
proportional to �2� ��0�T1�+�0�T2��2 when ��TK. The
dashed line in Fig. 2�c� shows the result for this case. The
double-peak structure becomes more pronounced.

We should mention a consequence of the asymmetric line
shape of �T, which questions the dephasing theory based on
the conventional model of the QPC. The dephasing rate is
too small when T
0.7 besides the absence of the extra peak.
If �T were symmetric, �0�T� would be symmetric around
T=1 /2. The difference between the experiment and theory
was then quantitative, but not qualitative. The experiment
revealed an essential feature of the QPC. For the two-channel
model used here, on the other hand, this asymmetry helps to
show the double-peak structure.

If the 0.7 structure of GQPC is observed, the second peak
near T=0.7 of � is sharper than the one without the 0.7
structure. This is because the conductance is changed notice-
ably near T=0.7, and then the shot noise through the J�2�

channel changes abruptly as well.
We did not address the amplitude of �G. As pointed out

by Kang,10 the asymmetrical structure of the QPC induces a
larger dephasing rate in the experiment. In this case, the
dephasing rate depends on not only �T, but also on the
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FIG. 2. �a� �0 as a function of T. Symbols indicate the experi-
mental data in Ref. 8. The solid line is the fitting curve. See also
Fig. 4�c� in Ref. 8. �b� GQPC as a function of the Fermi energy EF of
conduction electrons with 
�V�1��2=0.25, 
�V�2��2=0.025, U=1.5,
�=0.02, and kBT=0.001. The unit of energy is 	E0	. �c�
��0�T1�+�0�T2��n as a function of T. The thick solid line �n=1� is
for Eq. �9� while the thin line is for the conventional QPC model,
and the dashed line �n=2� is for Kang’s result �Ref. 10�.
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change of the phase shift through the QPC, which requires
additional information from experiments, such as measure-
ments in the device setup in Ref. 4.

In conclusion, we have discussed the dephasing mecha-
nism due to charge fluctuations of a quasibound state in a
quantum point contact. The bound state is responsible for
there being two transmission channels. The dephasing rate is
proportional to the sum of the transmission probability
through these two channels. This mechanism explains the

double-peak structure of the suppression rate of the conduc-
tance, observed in a recent experiment.8 The result is quali-
tatively different from the rate without the bound state in the
QPC.
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